Recovery Algorithms for Vector-Valued Data with Joint Sparsity Constraints
نویسندگان
چکیده
Vector valued data appearing in concrete applications often possess sparse expansions with respect to a preassigned frame for each vector component individually. Additionally, different components may also exhibit common sparsity patterns. Recently, there were introduced sparsity measures that take into account such joint sparsity patterns, promoting coupling of non-vanishing components. These measures are typically constructed as weighted `1 norms of componentwise `q norms of frame coefficients. We show how to compute solutions of linear inverse problems with such joint sparsity regularization constraints by fast thresholded Landweber algorithms. Next we discuss the adaptive choice of suitable weights appearing in the definition of sparsity measures. The weights are interpreted as indicators of the sparsity pattern and are iteratively up-dated after each new application of the thresholded Landweber algorithm. The resulting two-step algorithm is interpreted as a double-minimization scheme for a suitable target functional. We show its `2-norm convergence. An implementable version of the algorithm is also formulated, and its norm convergence is proven. Numerical experiments in color image restoration are presented.
منابع مشابه
A Sharp Sufficient Condition for Sparsity Pattern Recovery
Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...
متن کاملAn Iterative Algorithm for Nonlinear Inverse Problems with Joint Sparsity Constraints in Vector Valued Regimes and an Application to Color Image Inpainting
This paper is concerned with nonlinear inverse problems where data and solution are vector valued and, moreover, where the solution is assumed to have a sparse expansion with respect to a preassigned frame. We especially focus on such problems where the different components of the solution exhibit a common or so–called joint sparsity pattern. Joint sparsity means here that the measure (typicall...
متن کاملMinimization of a sparsity promoting criterion for the recovery of complex-valued signals
Ill-conditioned inverse problems are often encountered in signal/image processing. In this respect, convex objective functions including a sparsity promoting penalty term can be used. However, most of the existing optimization algorithms were developed for real-valued signals. In this paper, we are interested in complex-valued data. More precisely, we consider a class of penalty functions for w...
متن کاملNonparametric regression and classification with joint sparsity constraints
We propose new families of models and algorithms for high-dimensional nonparametric learning with joint sparsity constraints. Our approach is based on a regularization method that enforces common sparsity patterns across different function components in a nonparametric additive model. The algorithms employ a coordinate descent approach that is based on a functional soft-thresholding operator. T...
متن کاملThe application of joint sparsity and total variation minimization algorithms to a real-life art restoration problem
On March 11, 1944, the famous Eremitani Church in Padua (Italy) was destroyed in an Allied bombing along with the inestimable frescoes by Andrea Mantegna et al. contained in the Ovetari Chapel. In the last 60 years, several attempts have been made to restore the fresco fragments by traditional methods, but without much success. One of the authors contributed to the development of an efficient p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 46 شماره
صفحات -
تاریخ انتشار 2008